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We present a new Neumann subprobkeposteriorifinite-element procedure for

the efficient calculation of rigorous, constant-free, sharp lower and upper bounds for
linear and nonlinear functional outputs of the incompressible Navier—Stokes equa-
tions. We first formulate the bound procedure; we derive and discuss a bound error
expression; and we then demonstrate the capabilities of the method with numeri-
cal results obtained for natural convection problems. We also implement an optimal
adaptive refinement strategy based on a local elemental decomposition of the bound
gap. @© 2001 Academic Press

1. INTRODUCTION AND MOTIVATION

In typical design problems, engineers are rarely interested in the entire field soluti
only some selected characteristic metrics—or outputs—of the system are relevant. A
example, we consider the problem of cooling electronic components by natural convec
of airinthe enclosure represented in Fig. 1a, where the tempefasfieed on the boundary
o, a heat fluxg is imposed on segmenty, I'y, andl's, andBQ\U?zol"i is insulated. In our
example, the Boussinesq approximation is applicable, and the flow field is described by
incompressible Navier—Stokes equations coupled to a temperature equation. Given an
heat fluxq, we wish to determine whether the mean temperature bves = 1"% frﬂ ds,
is within an acceptable design intenfaks = [So, Supl. In practice, many different fluxes
must be tested, so there is a premium on efficiency. Much more complex design quest
can also be addressed.
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FIG.1. (a)DomainQ. (b) “Optimistic” coarse mesh,. (c) “Conservative” fine mesl;, = 7, 6. (d) Coarse
meshTy, .

In a classical simulation-based design approach, the output of interest is evaluated f
an approximate solution of the original problem. In the problem of cooling electron
components, Fig. 1a, we first evaluate the output of integest S(us, ps, 65) from an
approximate field solutiorius, ps, 0s)—hereus is the velocity field,ps is the pressure
field, 65 is the temperature field, ardddenotes the diameter of the discretization m&sh
We then verify whethes; € Zq4es and the heat flux is accepted or rejected accordingly.
The shortcoming of the classical approach resides in the choice of the discretization i
7s. If one chooses an “optimistic” coarse megh, Fig. 1b, the calculation imexpensive
but alsouncertainsince neithesy € Zgesimpliess € ZgesNOr Sy & Zgesimpliess & Zges
If, instead, one chooses a “conservative” sufficiently fine ngshrig. 1c—this mesh is
obtained by dividing each triangle of megh into 36 self-similar triangles—thes, ~ s
with reasonableertainty, buts, is now veryexpensivéo compute.

This paper presents a new approach which offers great promise in reconciling th
conflicting requirements. We propose to construct a pair of output bound approximatio
the estimators;; ands;;, computed predominantly on the me&h and with the following
attributes:

Al. As H — h, we haves}; — s, from above ands;; — s, from belowVH < H*.
HereH* is an unknown threshold discretization parameter; a detailed discusditrvatl
be given subsequently.

A2. If we define the half bound gapy = %(sﬁ —s5),thenAy < nlsy —shlasH —
h, with n independent oH. This property guarantees the optimal convergence rate al
sharpness of the bounds, provided the effectivity fagtisrnot too large.

A3. The bound gapAy admits elemental decompositiohy = ETH67H Ar,,, with
A+, > Ofor all elementsTy in 7y; this property will be used for adaptive refinement.

A4. The work required to evaluasg andsy, is substantially less than that necessary for
the computation o$;,, providedH « h.
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Note that attribute A2 is important not only for efficiency but also for ensuring the “wel
posedness” of the estimator formulation wheh < co.

In our example, Fig. la, the bound-based design would proceed as follows. Give
heat fluxg, we choose an initial mesfy, and we computs;| ands;. Next, we define
Ty = [sy. Sit]; according to attribute Al (provided < H*), if Z, € Z4es We accepty; if
Tp € R\Z4es We rejectq; otherwise, we use property A2—that is, we narrow the boun
gap by taking a finer mesh (a smalldr, and we repeat the procedure. In the last case
attribute A3 is important as it allows us to optimally refine the mesh through an adapt
procedure. Attribute A4 ensures that the complete procedure is much less expensive
directly computings,.

We illustrate these concepts by fixing a design inter¥als = [0.26, 0.28]. For a par-
ticular choice of the fluxg and of the parameters governing the problem, the outcome
the bound procedure performed on the coarse MgstFig. 1b) iss, = 0.275+ 8%, or
$h € Zp = [0.253 0.297]. According to our specification @fes we cannot decide whether
to accept or reject the heat flax Thus, we refine the mesh. The me&ly, is obtained
by dividing each triangle of mesh; into four triangles (by dividing each edge into two
edges); see Fig. 1d. For this new mesh, the bound procedure §ield8.276+ 1.4%, or
$h € Zp = [0.272 0.280]. Since nowZ, € Zg4es We can safely accept the flux Note that,
in this example, we have not used attribute A3 which allows optimal adaptive refineme
An example utilizing adaptivity will be given in Section 4.

The procedure is an extension of our recent general error-control strategy [8, 11,
15, 17], and may be viewed as an implicit Aubin—Nitsche construction; for a review, s
[9]. In [14], an early application of the technique to the Stokes equations is presented.
method is indebted to, but considerably generalizes, earlier finite el@pesteriorierror-
estimation techniques in that it provides a quantitative constant-free bound, in contras
earlier explicit techniques [4], and the bounded quantity is the output of interest, in contt
to earlier implicit techniques [2, 3, 7]. Some aspects of the method are also analogou
certain domain decomposition techniques [6, 12].

The application of our general technique to the Navier—Stokes equation presents se!
new challenges. The purpose of the present paper is (i) to give a detailed and comy
account of the bound algorithm, (ii) to derive and discuss a bound error expression, and
to demonstrate the attributes of the procedure with numerical examples. A complete
rigorous numerical analysis of the method is relegated to a future paper.

The paper is organized as follows. Section 2 contains the formulation of the bound g
cedure. We start by formulating the finite-element discretization of the natural convect
problem. We next introduce some preliminary definitions, and we describe the bound al
rithm in detail. Finally, we derive a bound error expression. Section 3 presents numerica
sults for two natural convection problems and an implementation of an optimal adap!
refinement strategy based on the bound procedure. Section 4 concludes the paper v
review of the various attributes of the method. For the convenience of presentation, s
mathematical developments have been presented in the Appendixes.

2. BOUND PROCEDURE

This section is divided into four parts. We first introduce the equations governing the n
ural convection problem considered, and we formulate the finite-element approximation
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ease the subsequent discussion, we also recall or introduce the necessary function sy
finite-element spaces, and forms. In the second part, we complete our definitions by in
ducing the ingredients particular to the bound method, namely, the “broken” finite-elem
spaces—which are characterized by relaxation of the continuity constraint of the fini
element functions across edges of the coarse mesh—and the Taylor expansion and spl
of the nonlinear forms introduced in the first part. In the third part, after the introduction
the appropriate concepts and definitions, we detail and discuss the five steps of the b
construction. Finally, in the last part, we discuss the bound error expression.

2.1. Problem Statement

Given a two-dimensional domai@2 € R?, we consider a problem of natural convection
which is, in the Boussinesq approximation, described by the system of equations

0 dU; 3Uj 8(ujui) ap A~ .
(=42 — 4+ — =—-86G InQ, 1
0X; (8Xj + 0X%; > + 0Xj + 9X%; pOG: @)
Jdu; .
— =0 inQ, 2
™ 2)
1 9% a(u;f .
-z + u; )=0 inQ, (3)
a 0XjdX;| 0X;

where the summation convention of repeated indices applies(u;, uy) is the velocity
field, p is the pressure field) is the temperature field, arfd= (§1, §2) is the unit vector
indicating the direction of gravity. The flow is governed by two nondimensional paramete
the Prandtl number and the Grashof numbgr We supplement Egs. (1), (2), and (3) with
the boundary conditions

6=0 onl,
Use=0 and { 2% =gy  onTy, fork=12... K, (4)
K
¥ =0 ond\ Up—o Tk

wherel'y € 922, 'k NI = B whenk # |, and the functiory : U,*f:o 'k — R represents
the heat flux.

2.1.1. Variational formulation. Our point of departure for a finite-element approxima-
tion of Egs. (1), (2), and (3) is a variational formulation. We first recall the definitions c
some function spaces and their associated norms and seminorms=Fpr<l+oo, we
define the spaces

LP(Q) = {v : Q — R|vis measurable an{ v|PdQ < +oo}
Q

and their associated norm

1/p
1olle) = (/ Ivlde> .
Q

L®(Q) ={v: Q2 —> R|esssufvX)|; X € Q} < o0}

We also define
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and the normjjv||., = ess suflv(X)]; X € Q}. Leta = (a1, a2) with o1 andw, being non-
negative integers; we define

o glaly
V= o o’
X1 0X;5

where|a| = a1 + ay. The Sobolev spacd*(Q) (e.g., see [1]), wherk is a non-negative
integer, is the space

HK(Q) = {v e L3(Q) | D% € L%(Q), V|a| < k}.
We will also use the spaces
HE(Q) = (v € HYQ) | vjpq = O}.

We finally introduce the norms and seminorms associated with the sp¢es,

1/2 1/2

vl ke = Z/|D“v|2dsz ol = [ D> [ ID*vPd@
Q

o] <k o=k &
We now define the function spac¥s= H3(Q2) x H}(Q), M = L3(Q),
X? = {ve HYQ) |y, = 0},

andY = X x M x XY, To facilitate the variational formulation of the problem, we define
the bilinear and trilinear forms

ov; ovi \ ow;
a:X x X > R a(v,w):/(i+ﬂ)ﬂdg,
Q 3Xj X 3Xj

)

1 a¢ 90
a’: X’ x X? - R, a"(qs,p):f/ﬁi
o QaXi8Xi

a.
b: X x M — R, b(v,r):-/ﬂrdsz,
Q 0%

a .
Y de,
8Xj

C: X x XxX—=>R, cv,Vo,W) = —/(vlivzj)
Q
0 . 0 ) 0 dp
CiXIxXx X" =R, c(¢,V,p)=— [ (¢pv))— dQ,
Q 3Xj
d: X x X >R, d(¢,w) =,3/¢wigi de.
Q
Finally, we introduce the “natural convection form,”

AV, 0, ), (W, T, p)) = av, W) +a’ (¢, p) + b(v, r) + bw, q)
+cv, v, w) +c? (¢, Vv, p) +d(p, W) — (In, p)n,  (5)
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where
<ng p)N = Z ON Oy dr
0<k<K YTk
(we assumegy € L?(Uy1, ..., kIk)). The variational formulation of Egs. (1), (2), and

(3), with boundary conditions (4), then consists of find{ng p, 6) € Y such that

A(U, p.6),(v,q,9)) =0, V(v.q,¢) €Y. (6)

As indicated in the Introduction, we assume that we are not directly interested in 1
complete field solutior(u, p, ), but that we wish to evaluate an output of interest
S(u, p, 8). We assume that the for@can be expressed as

S(v,q, ¢) = o+ £(v, 4, ¢) + M(V, V), (7)

wherecg € R, £ : Y — Ris a bounded linear functional, amil: X x X — R is a contin-
uous, symmetric, bilinear functional such that

m(v, W) < CIVll 2 IWll L2,

with C > 0. The norm in the product spade’(Q2) x L?(RQ) is defined by||v||fz(9) =
||v1||fz(m + ||v2||fz(9). In addition, since in this formulation the pressyrés defined only
to within a constant, we require that

2(0,1,0) = 0. (8)

2.1.2. Finite-element formulation.We will now define a finite-element approximation
of (6). We consider a (regular, uniform) triangulatigynof the domaire; that is,7; is a set
of trianglesT; such that

Q=Ure;Ts and T,NT =0 if Ty £T,,
whereA denotes the closure ¢ ¢ R?, ands is the diameter of the triangulatiaf,

8 = maxdiam(Ts), where dianiT;) = max|x —Y|.
Tse7Ts X,YeT;s

For a given triangulatioffs, we will denote byZs,», 7,3, . . . the refinements df; obtained
by dividing each triangle of; into 22, 32, ... self-similar triangles. In particular, we will
say that7y is a refinement of; if there is an integen > 0 such thaly = T;n.

In this work, we choose the Crouzeix—Raviart finite-element spaces for the velocity &
the pressure [5]; that is, the approximate velodigys in X; and the approximate pressure
ps is in M3, where

Xs = {ve X|vr, € Pa(Ts) ® Bs(T;), VT € T5 },
Ms = {p e LAQ) | py, € Pr(Ty), VTs € T3}
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HerelP(Ts) is the space of all polynomials of degre@ defined o, andBs(Ts) denotes
the space of bubble functions of degree 3lpriVe use the standard quadratic elements fo
the temperature fields € X¢, where

X§ ={p e X ¢, € Po(Ty), VT; € T5 }.

Finally, we define the solution space as the product saee X; x M; x X§.
The finite-element method for Egs. (1), (2), and (3) with the boundary conditions (
consists of the construction of an approximate solutign ps, 6s) € Ys such that

A((U,S, psz 95)7 (V9 q’ ¢)) = 07 V(Vv q1 ¢) S Yé-

We now assume that we are given two triangulatidhs, the coarse mesh, arif,,
the fine mesh, witl¥, = 7y, a refinement o/, andh « H. Therefore, we hav¥y C
Yh, whereYy is the finite-element space associated with the triangulafipnand Y,
is the finite-element space associated vidgh This inclusion, although not required for
the subsequent formulation of the bound method, follows immediately if we note tt
the fine mesh is obtained by dividing each triang@le € 7y into self-similar triangles
and, thus, the trace of the cubic bubble function on any edge of the fine mesh is at n
guadratic. The associated coarse-space and fine-space approximations, , ¢+) and
(Un, pn, ¥n), exhibitcomplementary advantages and disadvantages. The fine-space solu
(un, pn, ¥n) € Yh, Which satisfies the discrete equations

A((Uh, phv eh)s (V’ qs ¢)) = Ov V(Vs qv ¢) S Yhs (9)

yields a very good approximatios, = S(Un, pn, 6h), to the exact outpig; nevertheless, the
computational effort required to obtaiay, pr, 6n) will typically be prohibitive. In contrast,
the coarse-space solutiony, p, 64) € Yn, which satisfies the discrete equations

A(UH, PH, OH), (.0, ¢)) =0, V(v 0, 9) € Yq,

can be obtained with relatively modest computational effort; nevertheless the fidelity of
corresponding approximate outpst, = S(Uy, Py, On), IS no longer ensured.

2.2. Bounds Preliminaries

The formulation of the bound algorithm requires the definition of particular finite eleme
spaces, the “broken” spaces, which are obtained as extensions of the classical finite-ele
spaces by relaxing the continuity of the finite-element basis functions across edges o
coarse mesh. Moreover, due to the nonlinearity, noncoercivity, and honsymmetry of
problem, we must also expand the nonlinear fornand S into other linear, bilinear, and
trilinear forms. We then further decompose some of these new forms into coercive—w
respect to divergence-free functions—and noncoercive parts and symmetric and antis
metric components.
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2.2.1. “Broken” spaces. We denote by (7) the set of edgeg of 7j;. We define the
“broken” finite-element spaces as

Ru = {ve LARQ) x LAR) | uyr, € Pa(Th) @ Bs(Tw), YT € T },
Xn = {ve L2(Q) x L3(Q) v, € HX(Th), VTh € Ti;
vir, € Pa(Th) @ Ba(Th), VTh € Tn .,
X = {9 € LX) |9, € Pa(Tu). YT € T }.
)A(ﬁ = {¢ e LAQ) |1, € HY(Ty), VTy € Ta; o, € Pa(Th), VT € 7?1}

If Y = Xy x My x X4, and¥p, = X x My x X, we haveYy C Yy andY;, C Y.
We also define the “hybrid flux” spaces

Qn = {z € LX(N'(Tn)) x LA (Tw)) | iy € Pa(y), Yy € T(Tn) }.
!, ={ze LAT(Tn)) |z, € Pa(y),Vy € I'(Tn); 2, = 0,¥y € 3Q\I'o}.

The reason for using quartic polynomidl,) will become apparent in the bound procedure.
(Infact, P, polynomials would be sufficient.) We define the product spage= Qn x Qf,
and the formB : (X;, x My) x Zy — R,

B(V.0). 2 Z)= Y /([vi]yzi|y+[0]y2?y)d%

yel(Tw) 7Y

where p], denotes the jump im acrossy wheny € © and the trace o wheny € 9<.
Note that we have the following equivalence condition:

Yu={(v.0.¢) € Yu | B(V.9), (. 2)) =0,¥(z. Z') € Zy }.
2.2.2. Form expansions.We define

E(W P.0): (V.G.¢), W, T, p) = A(U+V, P+0.0 +¢). (W.1. p))

Since A((v, q, ¢), (W, I, p)) is quadratic in(v, ¢), we can express as

(W, P, 0); (v, G, d), W, T, 0)) = E((T, P, 6); (V, G, §), (W, T, p))
+ F((v, 9), (V. 9), (W, p)), (11)

whereE is linear in(v, g, ¢) and(w, r, o), andF is trilinear. The formE represents the
first variation of the natural convection form (5). We now proceed with the decompositic

E(W, P, 0); (V,q, #), (W, T, p)) = Eo((V, Q, ¢), (W, T, p)) + E1((T, 0); (v, 9), (W, p)),
where

Eo((V, G, ¢), (W, T, p)) = a(v, w) + a’(#, p) + b(v, 1) + b(w, q), (12)
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and
E1((0, 0); (v, ¢), (W, p)) = C(U, V, W) + C(v, T, W) + d(¢, W) + ¢"(0, v, p) + ¢ (¢, T, p).
The formF is expressed as
F((v1, 1), (V2, ¢2), (W, p))
= % [C(V1, V2, W) + C(V2, V1, W) + €7 (1, V2, p) + €7 (¢h2. V1, p)],

and is then symmetric ifvy, ¢1) and(vz, ¢2). Note that, if we define the space of discretely
divergence-free functions

Vh={v e Xn|b(v,q) =0,Yq € Mp},
thenEy is positive definite with respect ¥, x My, x Xﬁ since

Eo((v, 0, ¢), (v, Q. ¢)) = a,v) +a’ (¢, ¢) > 0,

forallv € Vh,q € Mp, andg € X{ with (v, ¢) # (0, 0).
Now, we expand the output, Eq. (7), as

SU+V, p+0.0+¢)— S@, P, 6) = LUT, P, 6); (v, G, $) + MV, V),
where
L((T, P, 0); (v, g, ¢)) = £(V, q, ) + M(U, V) + m(v, U) (13)

andM (v, v) = m(v, v).
We then define the following primal residual:

RP((@, P, 0); (V, G, §)) = —A((U, P, 0), (V, 4, ¢)). (14)

Finally, we define, foKu, p, 6) € Y, the linear dual problem: find the adjoifp, A, 1) €
Y solution of

E((@, P.0); (V. 0, 9), (3, A, 1)) = —L((@, . 0): (V. Q. $)).  ¥(V.q,¢) € V.

We also define the generalized dual residual

RU((U. P. 0): (3o, ho. )i (1. ua): (V. 0, §)) = —L((U. P, 0): (V. 0. $))
- EO((Va q7 ¢)7 (w07 )"07 MO)) - E]_((J, 9_)5 (V7 ¢))’ (¢17 I‘Ll)) (15)
The importance of the dual problem and the associate dual residual will appear sho
Note that, if we defin@=un — U, & = pn — p, and& = 6, — 6, then it follows, from
Egs. (9), (10), and (14), that

(@, p,0); (& &, &), (v,q, ¢) = RP((U, P, 0); (v, d, ¢)), YV, 0, 6) € Yn. (16)
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2.3. Algorithm

The bound algorithm proceeds in five steps. The computation is initiated by two glol
solves on the coarse megh: one for the initial nonlinear (primal) problem, Step 1, and
one for the adjoint linear (dual) problem, Step 2. In Step 3, we compute the hybrid flux
which will serve as boundary conditions for the local Neumann subproblems in Stey
after the elimination, by fine mesh projections, of the indefinite terms associated with
incompressibility constraint. In Step 5 we compute the bounds using the “reconstruc
errors” obtaine as the solutions to the local subproblems in Step 4.

2.3.1. Step 1. We computguy, py, ) € Yy as the solution of thprimal problem

A((UH9 pH,QH),(V’ q, ¢)) :07 V(V’ q, ¢) GYH.

In practice, we finduy, pu, 6x) = (u¥, pk, 65) using Newton iteration, which is conve-
niently expressed as follows:

1. Select an initial gues®?,, p%,62) € Yy and sek = 0.
2. Find(V4, g4, ¢n) € Yy such that
E((ul. P, 6): (Vi GH, d1). (W, T, p))
=R ((uly, pl. 65); W.r,0)), YW1, p) € Y.

Note that the solvability of the divergence-free constraint system is ensured by the hoi
geneous Dirichlet boundary condition.

3. Setk = k+ 1 and(u;, p., 65) = WL pSL 65 Y + (Vh. gu, ¢1); thengo to 1
or stop, according to an appropriate stopping criterion.

2.3.2. Step 2. We compute the adjointtyy, An, un) € Yn as the solution of the fol-
lowing dual problem:

E(UH, PH,ORH): (v, 0, 9), Py, AH, 1H))
= —L((Un, PH,OH); (V,Q,0)), VY(V,d,¢9) € Yh. (17)

Again, the solvability of the constraint system is ensured by the homogeneous Dirict
boundary condition and the condition

L((Un, PH,OH); (0,1,0) =0,

which follows from our definition of the output, Eq. (8), and from Eq. (13).

2.3.3. Step 3. We compute the primal and dual hybrid fluxeg, z)*" € Zy and
(z, )% e Zy, which satisfy the equations

B((v, ¢), (z Z)") = RP((Un, Pu, On); (v, G, ¢)), Y(V,Q,9) € \ (18)
and

B((V, 9), z Z)™) = RU(WUn, PH. O1); Wy Any wr)i (Wb, ien); (V, G, §)),
Y(V, 0, ¢) € Ynu. (19)
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To find a suitable solution of Eq. (18), we first form the approximatian,z})*" € Zy,

1
pr _ pro 4+ pro—
Ly = 2( Tijy Nyj — IJ\VnyJ)

6,pr

ly n+ 10 prn_ )

1
2( JI)/ Tily

wheren;,r (respectivelyn.’) denote the outward normal from the element on the arbitraril
chosen “positive” (respectively “negative”) side of the eggend

RIVITH OUR;
T = ( : J)—DHSU — UnjUnj,

i = 0X;j 0%
106
0,pr H
= =" —uy;b
! a 0X; HI7H

Note that, sinceuy;;, € P2(y), the approximation space for the hybrid fluxes includes
quartic polynomialsP4(y), to correctly repres:erzgI v andzgh’fr An alternative approach is
to interpolate the quartic term onifa, and thereby use onB, hybrid fluxes. Foxzo, z3)%,

we obtain similar expressions,

oVni  0VHj
= < L4 + IpH]) — Audij,

" 0X; 9X%;

10
_L,(?,du _ = HH

j o 3XJ' ’
Now, to satisfy Egs. (18) and (19), we correct these initial approximations as follows,

@2V = (2.2)" + (2.4)" + (%.2)"".
@) = (2.2)" + (2.2)" + (2. )™,

where(z, )P and(z, )% areP; corrections, andyz,, zg)pr and(zq, Z)) areP, corrections.
To obtain these corrections, we adapt a procedure developed in the context of energy-
implicit Neumann subproblem indicators [2, 7, 10].

2.3.4. Step 4. We compute the “incompressible local projectionsii;( P, 1) € Ya
for the primal problem antp 1, An, fin) € Y for the dual problem. These projections are
constructed to satisfy the following equations on the fine mesh,
b(dn,q) =0, Vqge My, (20)
b(@n, a) = —L((Un, Pr,O); (0.0, 0), Vg € My, (21)
which eliminate the indefinite terms associated with the incompressibility constraint. \
choosefdy = 0y, and, to satisfy Eq. (20), we writ@iy, Py) = (Un, pr) + (An, én),
where, for allTy € 7y, we computeAnpr,,, Sn1,) € X1, X M7, as the solution of
ar, (An,. V) +br, (V. 8hm) =0, YV e Xr,
br, (An,.q) = —b(unr,.q), Vg e My,
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with

v dwj v
aTH(v,W)z/ iﬂdQ, bTH(v,r)z—/ irdQ,
o 3Xj BXJ' T X

and
Xr, = {ve Hg(Tn) x Hy(Tw) [ vijr, € P2(Th) @ Ba(Th), VTh € Tn},
Mr, = {p e LATw)| pv, € PL(Th). ¥Th € Tn}.

This problem is solvable sind®&uyr,,, 1) = b(uy, 1;1,) = 0 for all Ty € 7y, thanks to
the discontinuous pressure space.

Similarly, we choosg.[; = iy and, to satisfy Eq. (21), we Writeh, fin) = (b, wr) +
(An, 8n), where, for allTy € 7y, we comput&Anp 1, , dn,) € X1, X My, asthe solution
of

ar, (Ah\TH s V) + bTH (V, (SthH) =0, Ve XTH s
br, (Anmy» d) = =b(¥u7,.9) — L((VH. PH.6R): (0,0.0), Vg € My,.

These equations form a solvable system since, from Eq. (17),
b(¥n, L) = —L(Un, PH, 61); (O, L7y, 0)).

A priori estimates for the projectiorisy andq,ZH are derived in Appendix 1.
We now compute the primal and dual “reconstructed errai@&,%, &)P" € Yy, and
(& &, &)% ¢ Yy, which satisfy the following equations:

2Eo((& 2, &)™, (v, 0, ¢)) = RP(((n, Pr, On); (v, 4, ¢))
—B((v,9), 2 Z)), Y(v.q,¢)eYn, (22

and

2E0((8, 8, €)M (v, q, §)) = RY(Un, PH, On); (Prs Ary fin); (WP, an); (V, G, $))
—B((V,9), 2 Z)™), VY(V,q,9) € Y. (23)

According to our definition of the spacé,, Egs. (22) and (23) correspond to local (ele-

mental) decoupled Neumann problems; the solvability of these subproblems is discusse
Appendix 2. Note that both the incompressible projection and the Neumann subproble
are local and linear and, therefore, inexpensive to compute compared to the global fine n

problem, Eq. (9). This issue is further discussed in Section 4.

2.3.5. Step 5. Finally, we compute the bounds, according to

S = S(0u, P, On) — RP (0w, B, On); @, fin. An))
+ kYEo((&F, 8%, 0), (8%, 8%, 0)) + «"Eo((0, 0, &%), (0, 0, &F)), (24)

where

1 1
@, 85,85 =@:8&)PF P oM F 0.0 &) (25)
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In this expressiong" and«? are two strictly positive real number. The choice of these
parameters will affect the half bound gap

1
Ay = §($ - $)
1
= «"Eo((& £,00", (& 8,0 + —Eo((& £, 00", (& & 0O%)
K
1
+x"Eo((0,0, &)™, (0,0, &)™) + —Eo((0,0, &)™, (0,0, &)™)
K

Since(8, &, &)P" and (&, ¢, @)% do not depend on the choice ©f andx?, we can readily
find x“ and«? that minimize the bound gap, and hence render the lower and upper bot
as sharp as possible. We find

u__ |Eol(&é, 0)du, (& &, 0)du)
Eo((& &, 0)P, (& &,0)P)°

,  [Eo(0,0,&)%, (0,0, &)
* T\ B0, 0, &)™, (0,0, &@)pr)°

2.4. Bounding Properties

If we define the erroré = up, — (iy, § = pn — Pu, and® =6, — 6y, we can derive the
bound error expression

s =s £ DY+ 1%, (26)
where
D* = kU Fo(B— &5, 5 — 6%,0) + k7 F5(0,0,& — &%),
with Fo(v, g, ¢) = Eo((V, q, ¢), (V, 9, ¢)). Recall thats, = S(up, pn, 6h) is the fine mesh
(truth) output. The derivation of the bound error expression and the definitibi afe
given in Appendix 3.

We now show thatD* > 0. We haveZ;(0, 0, & — &%) > 0 since, for allp € X?,
Fo(0,0, ¢) = a’(¢, ¢) > 0. Moreover, using the definition &, Eq. (12), we can write
Fo(B— &5 — 65, 0) =a@— &, &— &)+ 2o — &5 5 —&%).

For allg € My, we have, from (22) and (23), taking, @, ¢) = (0, q, 0),
2c"b(&*, ) = —k"b({n, @) % [b(PH, Q) + LUk, Pr. O1); (0,0, 0))],

and, by virtue of Egs. (20) and (21), we find that'B(&F, q) = 0 andb(&, q) = b(u,, —
Uu, q) = 0,Vqg € My,; therefore,

Fo@— &8 -85 00 =a@—&,&6-6)>0.
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We now examine the bound error expression, Eq. (26), and we see that the upper bc
(respectively, the lower bound) departs framby a positive (respectively negative) definite
contributionD™* (respectivelyD~) and an indefinite contributioh™ (respectivelyl ~). The
essential point is thaD* involves gradients only and is expected to converge at best lik
H* [10]. More precisely, we assume that there is a positive constant; 0, such that
CpH* < D*—avariant of the method, based on a hypothesis easier to verify, is introduc
in [16]. As argued in Appendix 4, the indefinite contributichinvolves only weaker norms
and converges likél °: there exists a positive consta®t such that * < C, H>. Therefore,
if we define H* = Cp/C,, according to Eq. (26), we obtain bounds for &ll< H*.
The numerical examples presented hereafter will show that in practice bounds are alv
obtained provided the mesh even barely resolves the flow. A similar argument has been
successfully in earlier applications of the bound method to a variety of other noncoerc
or nonlinear problems [8, 11]. This issue will be further discussed in Section 4.

3. NUMERICAL EXAMPLES

We first present numerical results for natural convection in a square domain. The prob
is defined by Egs. (1), (2), and (3), the geometry of the problem is shown in Fig. 2a, and
boundary conditions angj;e = 0,6 = 0 onTlg, 2¢ = 1 onT}, and3% = 0 otherwise. The
Prandtl number and the Grashof nhumberare 1 andg = 30,000, respectively. For this
choice of parameters, the Nusselt number issNR.49 (Nu™* = ﬁ fr. 6 dI", computed
with the fine mesh solution); for a pure conduction problem in this geometry: Nuand

(a) (b)

F[ F0

) m

FIG. 2. (a) Domain and coarse mesh,,. (b) Fine “truth” mesh,. (c) Streamlines. (d) Isotherms.
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thus Nu= 2.49 indicates the existence of velocity and thermal boundary layergnead
[o. The elements of the coarsest megh,, are chosen so that the diameter of the mesk
Ho, is approximately the size of the thickness of the boundary layers. Figures 2b, 2c,
2d represent the fine megh, the streamlines, and the isotherms obtained on the fine me:
respectively.

Figures 3a and 3b show the convergence of the bounds for the nonlinear output,

Si(u, p. 9) =/ uPde,
Q

corresponding to the kinetic energy of the flow. In Fig. 3a, we have represented
normalized lower and upper boundg,/s, andsy, /s, and the normalized coarse mesh out-
put,sy /S, for different meshegy . The mesh diameters vary frobh = Hoto H = Hy/6;

Tn = Tnys6 is the fine mesh. For this problem, bounds are obtained on all the mesi
considered. Figure 3b demonstrates that the convergence rate of the bound gap is opt
O(H*); the measured effectivity facter, defined a%) = Ay /| — sul,is 7.3<n < 7.7.

(a) (c)

1.03 — T 1.01 —

. Y
1.02 s'/s, - - "
1.01 | . 1t s/
T Su/Sh
0.99 | e ] 0.99 | sT/s,
098 | > /5 ]
0.97 — 0.98 .
0 0.04 008 0.12 0 004 008 0.12
H H
(b) (d)
05 T T 2.5 T T
O log(a,) ] 21 log(ay) ]
-05 . 15 .
-1 4 1t 4
-15 . 05 .
-2 . L R ] R 0 . 1 R ] .
-16 -14 -12 -1 -16 -14 -12 -1
log(H) log(H)

FIG. 3. Convergence of the (normalized) boundy's,, for (a) the kinetic energys, and (c) the mean
temperature on the heated bound&y,(b) and (d) show the convergence of the bound gap, for S and S,
respectively.
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Similar results are obtained for the output

1
SU, p,) = — [ 6dr.
Ty Jr

Figures 3c and 3d show the convergence of the bounds and of the bound gap; again optin
is achieved. For this output the effectivity factor is 3.6; < 5.

We next present results obtained for the model problem defined by Egs. (1), (2) and
the boundary conditions (4), and the domain represented in Fig. 1a. The output of inte
is

1
Iy

For this case the (nondimensional) heat flug is 1, and the Prandtl and Grashof numbers
area = 1 andp = 50,000; the resulting streamlines are shown in Fig. 4a.

Since the cost of computing the bounds is essentially a function of the number of €
mentsTy in 7y, itis desirable to construct optimized triangulations that maximize the bour
accuracy (minimize the bound gap) for a given number of degrees of freedom. As shc
in [17], the bound gapA 4, can be expressed as a sum of local elemental positive contrib
tions: Ay = ZTHETH AT, With A1, > 0. We can, therefore, implement a simple adaptive
strategy. Starting from an initial grid;,?, with bound gapA,, we generate a sequence of
triangulationg7,X, k = 1, 2, . ..} with corresponding bound gapa¥,, k = 1, 2, ...}, such
that each triangulatioX is obtained by refinement of the selected triang:]réél with
AKXt > amaxy, AKL, for a specified parameter© « < 1. The approach ensures that,
for a sufficiently largek, A'; < Atarg WhereAq > O is a gap target.

In practice, the refined mesh is obtained by dividing each selected triangle into fc
self-similar triangles (1 : 4 division). The adjacent elements are divided into two eleme

(a) (b) () (d)

FIG. 4. Model problem. (a) Streamlines. (b) Meg}. (c) Mesh7,t. (d) Mesh7,2.
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TABLE |
Convergence of the Bounds for the Problem of Fig. 1a
T T T, T2
Number of elements 264 417 680 1056
s 0.253 0.270 0.274 0.272
st 0.297 0.282 0.279 0.280
Ay 0.0223 0.0058 0.0025 0.0037

if necessary to avoid any hanging nodes (1:2 division). To preserve shape regularity,
do not allow the 1: 2 divided elements to be divided at a subsequent level of refinemer
should further division be required, we first produce a 1 : 4 division of the original eleme
and then proceed with the required subsequent divisions.

The effectiveness of the adaptive procedure is summarized in Table I, in W,ﬁidﬁ_‘fl,
andT,_‘f2 denote successive adapted meshes corresponding to Figs. 4b, 4c, and 4d, re
tively; the mest7y » is auniformrefinement 07,3. Table | shows that a reduction of the
relative bound gap from 8% for me4if to less than 1% for mes]i',‘2 is achieved by opti-
mal refinement with a final mesh which contains only slightly more than twice the numk
of elements of the mesH?. Note that, for each of the adapted coarse meshes, the truth f
mesh is obtained by dividing each element of the adapted coarse mesR altor@nts,
implying that the truth mesh is also adapted; nevertheless, our choice of a conserve
initial fine mesh guarantees that the truth solution is insensitive to the adaptation of the
mesh.

4. ATTRIBUTES OF THE METHOD

We review here the four attributes of the method defined in the Introduction.

4.1. Attribute Al

To summarize the previous discussion, we have shown that bounds are obtained fc
mesh diameter$l < H*, whereH* is an unknown threshold. Note that we expect the
singular perturbation prefactors/d.and 1/ (recall thate and g are the Prandtl and the
Grashof number, respectively), to unfortunately favor the indefinite terms; neverthele
the correspondingumericalsingular perturbation parameter will be small as soon as tf
coarse space even roughly resolves the structure of the solution, and thus the bound pro
will be preserved except perhaps on very crude meshes.

We conclude that, evenH * is not knowna priori, bounds are obtained once the solution
is marginally resolved. In numerical examples, we have always observed bounds, and
the uncertainty associated with* is not an important practical issue, although it constitute:
a real theoretical issue. Note thdt is a threshold parameter (bounds are obtained for a
H < H*); therefore, even iH* is not known, the method presents a significant advantag
over previous explicia posterioriestimation procedures in which the estimators themselve
involved unknown constants and functions. Note also that, for linear coercive problems (
the Stokes problem), bounds are obtained for ldiH* = oo) [13, 15, 17].

There is another source of uncertainty, namely, the choice of the fine FWesthich
should be selected fine enough to ensure|hats,| is negligible (recall that s is the exact
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solution). In practice, the mesh, is chosen conservatively by estimatiagriori the size

of the smallest structures anticipated and by ensuringZhgtrovides for an extremely
accurate representation of such structures. Note that the work to compute the bounds i
overly sensitive to the fineness of the truth mesh (see Section 4.4).

4.2. Attribute A2

The bounds are sharp. As demonstrated by the numerical results, the bound gap conv
at an optimal rate; for sufficiently regular problems we have observedihat C H*. The
effectivity factor,n = Ay /|sh — sul, has also been measured and typicallg 3 < 10,
though this will be problem— and output—dependent.

4.3. Attribute A3

We have used the local decomposition of the bound gap into elemental positive contri
tions to implement an adaptive refinement strategy. We have shown that a straightforw
implementation yields a very efficient procedure which allows us to obtain an error for t
output below a specified threshold with an “optimal” (small) number of elements.

4.4, Attribute A4

We recallthaty, pn, 6n) ands, = S(un, pn, 6n) are the field variables and the output that
are effectively indistinguishable from the exactfield solution and output and correspondin
expensive. Our lower and upper bounds are only interesting if they can be obtained
considerably lower expense than the computatiog,efand preferably at only a slightly
higher expense than the computatiorsgf the coarse approximation. From our definitions
of Y, and Yy, we see that Egs. (22) and (23) correspond to many small, local, line
Neumann subproblems, whereas Eq. (9) corresponds to a single large, global, nonli
problem. Itfollows that Egs. (22) and (23) present a smaller bandwidth—yielding substan
savings in both memory and computational time of direct solution strategies—and a sme
condition number—yielding faster convergence in iterative methods. In addition, Egs. (:
and (23) are symmetric, positive semi-definite, and completely decoupled—the last mak
straightforward parallel implementations possible. Furthermore, the dual problem, Eq. (’
and the subproblems, Egs. (22) and (23), are linear, leading to additional savings comp
to the original nonlinear fine-mesh problem. The relative savings are, of course, reduce
the global solver improves.

APPENDIX 1. INCOMPRESSIBLE PROJECTION

Recall that(liy, pr) = (Un, PH) + (An, 1), where for allTy € Ty, we have(Apy,,,
3nimy) € X7, x Mr,, which satisfies

ar, (Anmy, V) + b1, (v, 8n1,) =0, Vve Xq,, (27)
br,, (Anm,, @) = —=bUnT,, @), VY0 € Mr,. (28)

This problem is solvable sind&uyr,,, 1) = b(uy, L7,,) = 0 forall Ty € 7.

Given anyTy € 74, we first note that the inf-sup parametgy, , for Egs. (27) and (28)
is independent ofi andH (8+,, depends only on the shape i and not on its size); the
latter follows from the scale invariance gf, when defined with respect to the!(Ty)
seminorm (which is equivalent to the*(Ty) norm, as we have Dirichlet conditions on
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dTw). Thereforedv € Xy, such that

B VIHr iy 18n lzeryy < 1bmy (v, Shm) | = lar, (Anmy s VI < [AR a1 VIHLTL)

and thus

1
I8nllLe(yy < —1AnIHLTY)-

~ By

We then note that

= —b(UnT, — UH|T4> On)

IA

Clun — Un T lI8nllzera)

< —|Un — Un It | AnlHT)-
B,

Therefore, we have, for ally € 74,

C
[AnlHiT) < ——IUn — UH[H1(Th):
B,

moreover, sincepT,, = 0, we can apply the Poinaaihequality in conjunction with a
scaling argument to find

C
lAnllLzry) < ——HI[Uh — Un[H1Ty)-
B

Finally, squaring and summing over &l € 7y yields the estimates

|Un — UnlHi@) < Clun — Un|H1(@).
10 — UnllLz) < CHlUR — Un|Hio)-
The procedure forb , A4 ) is identical except that the right-hand side in Eq. (28) is nov

—b@y I 14,9) — L((Un, Pu. 61); (0, g, 0)). If we denote the adjoint obtained on the fine
mesh by, then we have

b(ny,,» @) = —L(WUk, Pr,6n); (0,0,0), V¥q € Mr,;
therefore,
aTH (Ah’ Ah) = _bTH (wh - I(pH’ Sh)a

and the rest of the proof follows. We thus obtain the estimates

|'J’H — Yy lhe < ClYn — Yylie,
||"Z;H —Yullize < CHIY, — Yylhye-
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APPENDIX 2. SOLVABILITY OF THE LOCAL NEUMANN SUBPROBLEMS
To ensure solvability of Egs. (22) and (23), we must prove
RP((@n, Br. On); (v, 0% 6%) = B((P, ¢°), (2. 2)™)

and

RYUH, PH. O1): (i An i) (W, wn): (V, 05, 6%) = B((W, ¢°), (z. 2)™),
for all the singular modess, g°, ¢°) € Yy, defined by

Eo((W. T, p), (>, 0% ¢%) =0,  ¥(W,T, p) € Vi,

The velocity singular modes aké = (17,,, 0), (0, L;1,), (Y7, —X7,,), for all Ty € 7y,
corresponding respectively to (elemental) translations irxttiieection, translations in the
y direction, and rotations. We also have the temperature mpidesly,, and the pressure

modesq® = 17,,. Since all these modes areYry, in view of Egs. (18) and (19), we have
to prove that

R (T, Pr, Or); (V, 05, %) = RP (U, Pu, 0r); (V, 05, 6%)) (29)

and

RY(Un, PHy OR); (@D, An, fin); (P n); (F, @5, %))
= RY(Un, PH, OH); (Pu, Ans in); (B, n); (V, G5, 69)). (30)

Looking first at Eq. (29), by the definition &' in Eq. (14),

RP'((Gn, P, On); (W, 0,0)) = —a(ln, V°) — bOF, Pu) — c(dn, Ou, V¥) — d@h, V)
= —C(GH, GH, VS) — d(éH,VS)

Using the definition ofc (note the importance of the conservative form), and since th
support ofv® is an elemenTy € 7y, we can write

vy 1 v ovd
c(ly, On, V) = — Oni -—'dQ:——/ Upilnj (| — + — JdQ =0,
(Un, UH, V) /TH HitlHi 5% 2 . U HJ(an + ™

and since the same argument applies(tay, Uy, V°) anddy = 6y, we have
R ((Gn, B, O1): (v, 0,0) = RP((Un, P, O1); (V°, 0,0)).
We now consider

RP'((Gn, P, On); (0,0,¢%) = —a’(@n, %) — " @n, Gn, ¢°) — (On, H°)N
= —(gn, P°)IN
= R ((Un, Pu,On); (0,0, ¢%)).
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Then, since fog® = 1;y,,,
RP((GH, Pr, On); (0,05 0) = 0= RP((Un, pu, On); (0,45, 0)),

Eq. (29) is satisfied.
Turning now to the dual problem, the definition®BfY, Eq. (15), gives

RYUUH, PH. O1); (. Aus fin): (P wn): (V. G5 6°))
= —L((Un, Pu, 0n); (¥, 0%, ¢°) — a(@pn, V) — & (jin, )
—E1((Un, O1); (V°, 8°), (Y, n)).
Sincea(yy, V) = 0 anda(yy, Vo) = 0, and since’ (jin, ¢°) = 0 anda’ (un, ¢%) = 0,
Eqg. (30) is satisfied. Note that, thanks to our definition of the generalized dual residual,

(15), the last argument d; is (¢, un) and not (ZJH , ) in the above expression; this
is essential to ensure the solvability of the dual subproblems.

APPENDIX 3. BOUND ERROR EXPRESSION

We define the erro& = up — (i, & = pp — Pr, and& = 6, — 6. We note that, since
(&2,&) e,

B(®& &), (z2)")=0 and B(@ &), (z Z)" =0.

Therefore, from Egs. (22) and (23), and from the definition of the f&gnEq. (12), we
have

2Eo((& &,0), (& &,0)) = RP((On, Pu,On); (& 7, 0)), (31)
2E0((0,0, &)™, (0,0, &)) = R (U, Pu,0n); (0,0, &)), (32)

and similarly

2Eo((8, &, &M, (8 8,&)) = RM(Un, P, On); (@n, An, fin): (P, n); (& 8, &)).

(33)
Then, using Eq. (25), we combine Egs. (31), (32), and (33) to write
2cYEo((E5, 6%, 0), (8 ¢, 0) + 2" Eo((0, 0, &%), (0, 0, &))
= k"RP((Gn, Pu, On); (& &, 0) + «“RP' (G, Pu,On); (0,0,&))
FRY(WUn, PH, O1); (Pu, dom, An); (P, 1n); (8 5, &)). (34)

We will now expand the right-hand side of Eq. (34). Using Eg. (16) and the expansic
Eqg. (11), one can write

KURP"((Gw, P, On); (8 8,0)) = k"Eo((& &, &), (8 §,0))

+k"E1((Gn, On); (&, &), (8,0) +k"F((& &), (& &), (& 0) (35)
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and

KRP'((Gw, P, Gn); (0,0,&)) = k" Eo((8 2, &), (0,0, &))
+kE1((Ou,0n); B &), (0,&)) +°F((& &), & &)(0,&)).

From the definition of the dual residual, Eq. (15), we also have

RY(WUn, PH> Or); (PHs s in); (P, in); & &, &)
= —L((Un, PH, O1); (B &, &)) — Eo((& &, &), (Pu, A, fin))
- El((qu GH)a (éa 5)5 (";bH’ /’LH))a

which, by virtue of Egs. (16) and (11), can be rewritten as

RY(WUn, PHy Or); (Pr, A fin); (W, ) (8 8, &)

= —L((@n, Pn, On); & &, &)) — RP((@n, Prr On): w2y fin)
+F(@E &), &), n, iin) + [E1((@n. 0n); & &), @b, fin)
— E1((Un, 01); B &), (W, wu)] + [L([Tu, P, n); B &, &)

- L((UH ) pH ) GH); (é9 51 ée))]'
Now, combining Egs. (34)—(37), we write

0 = T2 Eo((&F, £*,0), (& &,0)) F 2«7 Eo((0, 0, &%), (0,0, &))
+x"Eo((8 & &), (8 £ 0) £«"E1((On.0n): & &), (8 0)
+xEo((& £ &), (0,0,&)) £ «"Ex((lin. On); & &), (0, &))
+'F(® &), & &), ®0)+F(& &), ®&),(08&)

+ L((@, Pr,On); & 2, &)+ RP(@n, Br, On); (Pu, dns fin))
~F(® &), ®&), @n, in)) — [E1(@n, Gu); @ &), (n, fin))

— E1((Un, 01); & &), (b, )] — [L(@On, Pr, On); & & &)
—L((up, pu, On); @& &, &)).

If we add Eq. (38) to the bound equation, Eq. (24), noting that

Eo((8 &, &), (8 & 0) = Eo((& §,0), (& £,0)),
Eo((& &, &), (0,0,&)) = Eo((0, 0, &)), (0,0, &)),

we find the bound error expression
s = £ DEF 4+ 1%,
where

D* = kU Fo(B— &5, 6 —6%,0) 4+« F5(0,0,& — &)

(36)

37)

(38)
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andl* = ZJ 1Ii In these expressiongy (v, q, ¢) = Eo((v, q, ¢), (v, q, ¢)) and

= —F(@& &), &) @Pn.fin).
|2 = +k"E1 (., On); (8 &), (8,0) £« Es((Gn. 0n); & &), (0, &)),
Iy = +"F(R &), @ &) (20)£cF(&¥), @¢&)0¥)),
I4 =—-M(§ 8,
1& = Ex((Un. 61): B &), (. 1)) — Ex(@n, 01); B &), (P, fin)),
1§ = L((Un. Pr.OR); B &, &) — L((@n. Pu.0n); &5 &)).

APPENDIX 4. CONVERGENCE OF THE INDEFINITE TERMS

We give here explicit expressions for the indefinite terhas, ¢, defined in Appendix 3,

-
||l|_‘/eeJ ‘p“' dsz+/~9~,-ﬁds2
Q

8Xj

3 98
K“[/GHiéje'dQ—f—/é.UHj'dQ]
Q BXJ Q 8XJ
~ 0 &
0 8 — dQ /égﬁ —dQ| — “/“-éé9dsz,
+k L/Q H ]3Xj + o H; 3Xj ,3/( Qg| i
98 &
g = Ku/éléj—ad9+lc /égéj dQ',
Q Q
1] = Im(& 8,

0Vhi /~ OVHi / OlLH
1IZ =1/ uyié dQ u dQ O — dQ
sl /QHIJa +QQH18X + HJ8XJ

d 9 Vi
+/é9quﬁdsz—/uH.e, Vi g /é.aHj UHi g
Q 3Xj Q 0X J Q 3Xi

~ .o o~ Of ~ ~
—/eHejﬁdQ—/eGu Hj dsz—ﬂ/e"wm—x/fm)gidsz,

)

+
||2|:

:l: ~ ~
[lg'] = 2Im(uy — Oy, 8.
We also note that
[BlH1@) = [un — Ul lHie)
< |Unh — UnlH1@) + Un = OHlHy@
< Clup — Unlnig < CH?

the last line follows form standal priori estimates assuming thate H3(Q) x H3(Q).
Similarly, we have

x 3
l€llL2) < llUp — UK llL2@) + CHIUR — U |H1@) < CHZ,

from the standard Aubin—Nitsche estimate. This result is directly useful to prove, f
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instance, that, in termy,
~ ~ x 6
Im(up — Gy, &) < Clluy — Gu e lI€llLz@) < CH®.

We will now estimate the convergence rates of two other (representative) selected tern
216:1 |l £]. The convergence rates of the remaining terms are obtained by similar argume
We first consider a term ifl li [,

/ééjZWHi do /ééj3(1ﬁHi —llfi)dg‘_’_
Q Q

0X; 0X;

=

’

8.
/é.é,- LA
Q

3Xj

< |l€llLae I€llLae IV (¥H — ) L2

+ 1€l L2 1€l Lae) VPl Lae) »

where we have used the Cauchy—Schwartz inequality. By virtue of the Sobolev inequa
||U|||_4(Q) < C”U”Hl(g), Yv € Hl(Q) (e.g., see [1])1 we now write

AU i
/éléj I/IHIdQ
Q 3Xj

where we have exploited our previous estimates; 6Be@ndC, denote two generic positive
constants independent | and we have assumedy € H3(Q) x H3(Q).
For our second example, we rewrltg as

OV o 0 — Yhi)
||5i| = ‘/Q(uHi — Oni)e 8X]-I dQ—i—/QUHiej#dQ

< Cill€llnre €l ni e H — Ylnye) + Calléllz) I8l vie) T Ha@w)

< C1H® 4+ CyH>,

N L Vi o Wi — Vi)
+AQ(UHJ _qu) ale dQ+/QaqulaledQ

. D
+ [ @~ da— p [ & - T do
Q X Q

’

and we consider, for instance,

N _ OV ~ ~ Vi
/Q(UHi — UHi)€; BX? dQ) < /Q(UHi ~ UHi)®; 0X; dQ’
+ /(DHi —UHi)éjwdQ’
Q %

< Cill€ll Lz llun — Gr llLae) IVl L)
+Collhn — Yllnie 18l IGn — UnllLao)
< Cill@ll iz llun — Gh llH e 1% 1 H2@)
+Caollpy — Yl 18l l0n — Uk )
< CiH® + CoH®,

where the second inequality follows from the application of the Cauchy—Schwartz inequ
ity. In the third inequality, we have again used the standard Sobolev ineqiality,q, <
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vl 1o for all v e HY(). The last inequality is a direct consequence of our previou

estimates.
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